首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1488篇
  免费   284篇
  国内免费   62篇
化学   464篇
晶体学   11篇
力学   61篇
综合类   5篇
数学   11篇
物理学   1282篇
  2024年   4篇
  2023年   50篇
  2022年   61篇
  2021年   82篇
  2020年   80篇
  2019年   13篇
  2018年   54篇
  2017年   94篇
  2016年   87篇
  2015年   41篇
  2014年   152篇
  2013年   74篇
  2012年   115篇
  2011年   101篇
  2010年   92篇
  2009年   81篇
  2008年   75篇
  2007年   80篇
  2006年   89篇
  2005年   52篇
  2004年   53篇
  2003年   48篇
  2002年   34篇
  2001年   25篇
  2000年   30篇
  1999年   22篇
  1998年   28篇
  1997年   21篇
  1996年   22篇
  1995年   21篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1834条查询结果,搜索用时 15 毫秒
101.
An ultrasonic-assisted separation of alkali chloride (LiCl, NaCl, and KCl) salts have been carried out using of an hydrophobic ionic liquid membrane (ILM). The ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and tributyl phosphate mixture have been used as ILM. An ultrasonic probe with different frequencies (25, 100, and 250) kHz have been applied as source of ultrasound generator with different times of sonication (2, 5, and 10) min in three phases system containing feed, ILM, and receiver in osmotic U-shaped tube. Also, 250, 500, and 1000 ppm of the feed (alkali chloride) concentration have been used to separate. The frequency of 250 kHz with higher sonication time provides optimum condition for separation of LiCl with lower feed concentration. The thermodynamic properties such as density and speed of sound and the related thermodynamic properties have been calculated to optimize ILM composition (xIL = 0.45) for ultrasound-separation.  相似文献   
102.
The deficiency of drinking water sources has become a serious crisis for the future of the world that the photocatalytic process is one of the most favorable methods for removal of artificial dyes and poisonous organic impurities. In the present study, rapid ultrasonic treatment was performed to obtain La2Sn2O7/Graphitic carbon nitrides (LSO/CN) nanocomposites with advanced photo-catalytic performance. Broccoli extract was utilized as a natural surfactant with active surface groups to control nucleation and growth of formed crystals with the creation of spatial barriers around the cations, and finally prevent nano-product agglomeration. Changing experimental parameters in synthesis reaction in turn offers a virtuous control over the nano-products size and shape. The shape and size distribution of particles was considered via diverse characterization techniques of microscopic and spectroscopic. The photocatalytic behaviors along with a kinetic study of the nanoparticles were examined by elimination and degradation of different artificial dyes under the UV waves. Effect of particle size, weight ratio of LSO:CN, type of dye, scavenger kind, dye and catalyst loading was designated on altering proficiency of nano-catalyst function. Also, the probable mechanism of removal dye by photocatalytic function was studied.  相似文献   
103.
Protein oxidation leads to covalent modification of structure and deterioration of functional properties of quinoa protein. The objective of this study was to investigate the effects of ultrasonic treatment on the functional and physicochemical properties of quinoa protein oxidation aggregates. In this concern, 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) was selected as oxidative modification of quinoa protein. The microstructure of quinoa protein displayed by scanning electron microscope (SEM) indicated that oxidation induced extensive aggregation, leading to carbonylation and degradation of sulfhydryl groups. Aggregation induced by oxidation had a negative effect on the solubility, turbidity, emulsifying stability. However, according to the analysis of physicochemical properties, ultrasonic significantly improved the water solubility of quinoa protein. The quinoa protein treated by ultrasonic for 30 min exhibited the best dispersion stability in water, which corresponded to the highest ζ-potential, smallest particle size and most uniform distribution. Based on the FT-IR, SDS-PAGE and surface hydrophobicity analysis, the increase of α-helix, β-turn and surface hydrophobicity caused by cavitation effect appeared to be the main mechanism of quinoa protein solubilization. In addition, the hydrophobic region of the protein was re-buried by excessive ultrasonic treatment, and the protein molecules were reaggregated by disulfide bonds. Microstructural observations further confirmed that ultrasonic treatment effectively inhibited protein aggregation and improved the functional properties of quinoa protein.  相似文献   
104.
In this study, scallop mantle protein was treated by ultrasound at different powers, and then analyzed by ANS fluorescent probes, circular dichroism spectroscopy, endogenous fluorescence spectrum, DNTB colorimetry and in-vitro digestion model to elucidate the structure–function relationship. The results indicated that ultrasound can significantly affect the secondary structure of scallop mantle protein like enhancing hydrophobicity, lowering the particle size, increasing the relative contents of α-helix and decreasing contents of β-pleated sheet, β-turn and random coil, as well as altering intrinsic fluorescence intensity with blue shift of maximum fluorescence peak. But ultrasound had no effect on its primary structure. Moreover, the functions of scallop mantle protein were regulated by modifying its structures by ultrasound. Specifically, the protein had the highest performance in foaming property and in-vitro digestibility under ultrasonic power of 100 W, oil binding capacity under 100 W, water binding capacity under 300 W, solubility and emulsification capacity under 400 W, and emulsion stability under 600 W. These results prove ultrasonic treatment has the potential to effectively improve functional properties and quality of scallop mantle protein, benefiting in comprehensive utilization of scallop mantles.  相似文献   
105.
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.  相似文献   
106.
微细电火花技术凭借自身的特点和优势,在航空航天、医疗器械等领域发挥着重要的作用。超声振动辅助电火花加工在传统电火花加工中引入超声振动,加工精度和加工效率明显提高。作为核心部件,超声振动主轴的设计尤为重要。但传统设计过程,大大延长了研发周期和增加了成本,,因此,采用仿真方式进行研究具有重要的意义。本文对设计的微细电火花超声振动主轴的进行了仿真研究,通过ABAQUS进行了模态分析和谐响应分析,得到了超声振动主轴的谐振频率和输出振幅等参数。超声振动主轴的测试实验验证了仿真结果的正确性。  相似文献   
107.
This work describes the dielectric properties of piezoelectric poly(vinylidene fluoride) (PVDF) thin films in the frequency and temperature ranges relevant for usual applications. We measured the isothermal dielectric relaxation spectra of commercial piezoelectric PVDF thin films between 10 Hz to 10 MHz, at several temperatures from 278 K to 308 K. Measurements were made for samples in mechanically free and clamped conditions, in the direction of the poling field (perpendicular to the film). We found that the imaginary part of the dielectric relaxation spectra of free and clamped PVDF samples is dominated by a peak, above 100 kHz, that can be characterized by a Havriliak-Negami function. The characteristic time follows an Arrhenius dependence on temperature. Moreover, the spectra of the free PVDF samples show two additional peaks at low frequencies which are associated with mechanical relaxation processes. Our results are important for the characterization of piezoelectric PVDF, particularly after the stretching and poling processes in thin films, and for the design and characterization of a broad range of ultrasonic transducers.  相似文献   
108.
Variations in velocity of sound and amplitude of the signal of a commercial magnetorheological fluid under different magnetic fields are studied experimentally. Different factors such as orientation, uniformity, geometry and intensity of the magnetic field are investigated. An increase in the change of MR fluid acoustical properties is obtained when the magnetic field intensity is risen. In addition, these properties show an opposite behavior when a magnetic field is applied parallel or perpendicular to the ultrasound propagation. Experiments using an electromagnet and permanent magnets as the source of magnetic field are also compared. Properties such as anisotropy in sound velocity and amplitude make these materials interesting regarding applications.  相似文献   
109.
Pure and Cobalt doped zinc oxide were deposited on glass substrate by Ultrasonic spray method. Zinc acetate dehydrate, Cobalt chloride, 4-methoxyethanol and monoethanolamine were used as a starting materials, dopant source, solvent and stabilizer, respectively. The ZnO samples and ZnO:Co with Cobalt concentration of 2 wt.% were deposited at 300, 350 and 400 °C. The effects of substrate temperature and presence of Co as doping element on the structural, electrical and optical properties were examined. Both pure and Co doped ZnO samples are (0 0 2) preferentially oriented. The X-ray diffraction results indicate that the samples have polycrystalline nature and hexagonal wurtzite structure with the maximum average crystallite size of ZnO and ZnO:Co were 33.28 and 55.46 nm. An increase in the substrate temperature and presence doping the crystallinity of the thin films increased. The optical transmittance spectra showed transmittance higher than 80% within the visible wavelength region. The band gap energy of the thin films increased after doping from 3.25 to 3.36 eV at 350 °C.  相似文献   
110.
For the measurement of particles size with backscattering method, the suitable range of particles size measurement have been presented by independent algorithm in Visual‐infrared incident spectrum. We defined the range according to the retrieved results based on the analysis and comparison to many kinds of R‐R distribution function. The simulation computation results showed that the particles size measurement range is from 0.05 μm to 18 μm with incident spectrum from 0.4 μm to 2 μm and different refractive index. The results retrieved were satisfied even if 1 % noise was added into the backscattering intensity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号